跳到主要內容

從 0 開始機器學習 - 神經網絡反向 BP 算法!

最近一個月項目好忙,終於擠出時間把這篇 BP 算法基本思想寫完了,公式的推導放到下一篇講吧。


一、神經網絡的代價函數


神經網絡可以看做是複雜邏輯回歸的組合,因此與其類似,我們訓練神經網絡也要定義代價函數,之後再使用梯度下降法來最小化代價函數,以此來訓練最優的權重矩陣。


1.1 從邏輯回歸出發


我們從經典的邏輯回歸代價函數引出,先來複習下:


\[J(\theta) = \frac{1}{m}\sum\limits_{i = 1}^{m}{[-{y^{(i)}}\log ({h_\theta}({x^{(i)}}))-( 1-{y^{(i)}})\log ( 1 - h_\theta({x^{(i)}}))]} + \frac{\lambda}{2m} \sum\limits_{j=1}^{n}{\theta_j^2} \]


邏輯回歸代價函數計算每個樣本的輸入與輸出的誤差,然後累加起來除以樣本數,再加上正則化項,這個我之前的博客已經寫過了:



  • 從 0 開始機器學習 - 邏輯回歸原理與實戰!

  • 從 0 開始機器學習 - 正則化技術原理與編程!


這裏補充一點對單變量邏輯回歸代價函數的理解,雖然這一行代價公式很長:


\[cost(i) = -{y^{(i)}}\log ({h_\theta}({x^{(i)}}))-( 1-{y^{(i)}})\log ( 1 - h_\theta({x^{(i)}})) \]


但是其實可以把它簡單的理解為輸出與輸入的方差,雖然形式上差別很大,但是可以幫助我們理解上面這個公式到底在計算什麼,就是計算輸出與輸入的方差,這樣理解就可以:


\[cost(i) = h_{\theta}(x^{(i)} - y^{(i)})^2 \]


1.2 一步步寫出神經網絡代價函數


前面講的簡單邏輯回歸的只有一個輸出變量,但是在神經網絡中輸出層可以有多個神經元,所以可以有很多種的輸出,比如 K 分類問題,神經元的輸出是一個 K 維的向量:



因此我們需要對每個維度計算預測輸出與真實標籤值的誤差,即對 K 個維度的誤差做一次求和:


\[\sum\limits_{i = 1}^{k}{[-{y_k^{(i)}}\log ({h_\theta}({x^{(i)}}))_k-( 1-{y_k^{(i)}})\log ( 1 - h_\theta({x^{(i)}})_k)]} \]


然後累加訓練集的 m 個樣本:


\[-\frac{1}{m}[\sum\limits_{i = 1}^{m}\sum\limits_{k = 1}^{k}{[-{y_k^{(i)}}\log ({h_\theta}({x^{(i)}}))_k-( 1-{y_k^{(i)}})\log ( 1 - h_\theta({x^{(i)}})_k)]}] \]


再加上所有權重矩陣元素的正則化項,注意 \(i, j\) 都是從 1 開始的,因為每一層的 \(\theta_0\) 是偏置單元,不需要對其進行正則化:


\[\frac{\lambda}{2m}\sum\limits_{i = l}^{L - 1}\sum\limits_{i = 1}^{S_l}\sum\limits_{j = 1}^{S_l + 1}(\theta_{ji}^{(l)})^2 \]



  • 最內層求和:循環一個權重矩陣所有的行,行數是 \(S_l + 1\) 層激活單元數

  • 中間層求和:循環一個權重矩陣所有的列,列數是 \(S_l\) 層激活單元數

  • 最外層求和:循環所有的權重矩陣


這就得到了輸出層為 K 個單元神經網絡最終的代價函數:


\[J(\theta) = -\frac{1}{m}[\sum\limits_{i = 1}^{m}\sum\limits_{k = 1}^{k}{[-{y_k^{(i)}}\log ({h_\theta}({x^{(i)}}))_k-( 1-{y_k^{(i)}})\log ( 1 - h_\theta({x^{(i)}})_k)]}] + \frac{\lambda}{2m}\sum\limits_{i = l}^{L - 1}\sum\limits_{i = 1}^{S_l}\sum\limits_{j = 1}^{S_l + 1}(\theta_{ji}^{(l)})^2 \]


有了代價函數后,就可以通過反向傳播算法來訓練一個神經網絡啦!


二、神經網絡反向 BP(Back Propagation) 算法


2.1 BP 算法簡介


之前寫神經網絡基礎的時候,跟大家分享了如何用訓練好的神經網絡來預測手寫字符:從 0 開始機器學習 - 神經網絡識別手寫字符!,只不過當時我們沒有訓練網絡,而是使用已經訓練好的神經網絡的權重矩陣來進行前饋預測,那麼我們如何自己訓練神經網絡呢?


這就需要學習反向 BP 算法,這個算法可以幫助我們求出神經網絡權重矩陣中每個元素的偏導數,進而利用梯度下降法來最小化上面的代價函數,你可以聯想簡單的線性回歸算法:從 0 開始機器學習 - 一文入門多維特徵梯度下降法!,也是先求每個參數的偏導數,然後在梯度下降算法中使用求出的偏導數來迭代下降。


因此訓練神經網絡的關鍵就是:如何求出每個權重係數的偏導數?,反向 BP 就可以解決這個問題!這裏強烈建議你學習的時候完全搞懂 BP 算法的原理,最好自己獨立推導一遍公式,因為你以後學習深度學習那些複雜的網絡,不管是哪種,最終都要使用反向 BP 來訓練,這個 BP 算法是最核心的東西,面試也逃不過的,所以既然要學,就要學懂,不然就是在浪費時間。


2.2 BP 算法基本原理


我先用個例子簡單介紹下 BP 算法的基本原理和步驟,公式的推導放到下一節,反向 BP 算法顧名思義,與前饋預測方向相反:



  • 計算最後一層輸出與實際標籤值的誤差,反向傳播到倒數第二層

  • 計算倒數第二層的傳播誤差,反向傳播到倒數第三層

  • 以此類推,一層一層地求出各層的誤差

  • 直到第二層結束,因為第一層是輸入特徵,不是我們計算的,所以不需要求誤差


以下面這個 4 層的神經網絡為例:



假如我們的訓練集只有 1 個樣本 \((x^{(1)}, y^{(1)})\),每層所有激活單元的輸出用 \(a^{(i)}\) 向量表示,每層所有激活單元的誤差用 \(\delta^{(i)}\) 向量表示,來看下反向傳播的計算步驟(公式的原理下一節講):



  1. 輸出層的誤差為預測值減去真實值:\(\delta^{(4)} = a^{(4)} - y^{(1)}\)

  2. 倒數第二層的誤差為:\(\delta^{(3)} = (W^{(3)})^T \delta^{(4)} * g'(z^{(3)})\)

  3. 倒數第三層的誤差為:\(\delta^{(2)} = (W^{(2)})^T \delta^{(3)} * g'(z^{(2)})\)

  4. 第一層是輸入變量,不需要計算誤差


有了每層所有激活單元的誤差后,就可以計算代價函數對每個權重參數的偏導數,即每個激活單元的輸出乘以對應的誤差,這裏不考慮正則化:


\[\frac {\partial}{\partial W_{ij}^{(l)}} J (W) = a_{j}^{(l)} \delta_{i}^{(l+1)} \]


解釋下這個偏導數的計算:



  • \(l\) 表示目前計算的是第幾層

  • \(j\) 表示當前層中正在計算的激活單元下標(\(j\) 作為列)

  • \(i\) 表示下一層誤差單元的下標(\(i\) 作為行)


這個計算過程是對一個樣本進行的,網絡的輸入是一個特徵向量,所以每層計算的誤差也是向量,但是我們的網絡輸入是特徵矩陣的話,就不能用一個個向量來表示誤差了,而是應該也將誤差向量組成誤差矩陣,因為特徵矩陣就是多個樣本,每個樣本都做一個反向傳播,就會計算誤差,所以我們每次都把一個樣本計算的誤差累加到誤差矩陣中:


\[\Delta_{ij}^{(l)} = \Delta_{ij}^{(l)} + a_{j}^{(l)} \delta_{i}^{(l+1)} \]


然後,我們需要除以樣本總數 \(m\),因為上面的誤差是累加了所有 \(m\) 個訓練樣本得到的,並且我們還需要考慮加上正則化防止過擬合,注意對偏置單元不需要正則化,這點已經提過好多次了:



  • 非偏置單元正則化后的偏導數 \(j \neq 0\)


\[D_{ij}^{(l)} = \frac {1}{m}\Delta_{ij}^{(l)}+\lambda W_{ij}^{(l)} \]



  • 偏置單元正則化后的偏導數 \(j = 0\)


\[D_{ij}^{(l)} = \frac{1}{m}\Delta_{ij}^{(l)} \]


最後計算的所有偏導數就放在誤差矩陣中:


\[\frac {\partial}{\partial W_{ij}^{(l)}} J (W) = D_{ij}^{(l)} \]


這樣我們就求出了每個權重參數的偏導數,再回想之前的梯度下降法,我們有了偏導數計算方法后,直接送到梯度下降法中進行迭代就可以最小化代價函數了,比如我在 Python 中把上面的邏輯寫成一個正則化梯度計算的函數 regularized_gradient,然後再用 scipy.optimize 等優化庫直接最小化文章開頭提出的神經網絡代價函數,以此來使用反向 BP 算法訓練一個神經網絡:


import scipy.optimize as opt

res = opt.minimize(fun = 神經網絡代價函數,
x0 = init_theta,
args = (X, y, 1),
method = 'TNC',
jac = regularized_gradient,
options = {'maxiter': 400})

所以神經網絡反向 BP 算法關鍵就是理解每個權重參數偏導數的計算步驟和方法!關於偏導數計算公式的詳細推導過程,我打算在下一篇文章中單獨分享,本次就不帶大家一步步推導了,否則內容太多,先把基本步驟搞清楚,後面推導公式就容易理解。


2.3 反向 BP 算法的直觀理解


之前學習前饋預測時,我們知道一個激活單元是輸入是上一層所有激活單元的輸出與權重的加權和(包含偏置),計算方向從左到右,計算的是每個激活單元的輸出,看圖:



其實反向 BP 算法也是做類似的計算,一個激活單元誤差的輸入是后一層所有誤差與權重的加權和(可能不包含偏置),只不過這裏計算的反向是從右向左,計算的是每個激活單元的誤差,對比看圖:



你只需要把單個神經元的前饋預測和反向 BP 的計算步驟搞清楚就可以基本理解反向 BP 的基本過程,因為所有的參數都是這樣做的。


三、神經網絡編程細節


3.1 隨機初始化


每種優化算法都需要初始化參數,之前的線性回歸初始化參數為 0 是沒問題的,但是如果把神經網絡的初始參數都設置為 0,就會有問題,因為第二層的輸入是要用到權重與激活單元輸出的乘積:



  • 如果權重都是 0,則每層網絡的輸出都是 0

  • 如果權重都是相同的常數 \(a\),則每層網絡的輸出也都相同,只是不為 0



所以為了在神經網絡中避免以上的問題,我們採用隨機初始化,把所有的參數初始化為 \([-\epsilon, \epsilon]\) 之間的隨機值,比如初始化一個 10 X 11 的權重參數矩陣:


\[initheta = rand(10, 11) * (2 * \epsilon) - \epsilon \]


3.2 矩陣 <-> 向量


注意上面優化庫的輸入 X0 = init_theta 是一個向量,而我們的神經網絡每 2 層之間就有一個權重矩陣,所以為了把權重矩陣作為優化庫的輸入,我們必須要把所有的權重參數都組合到一個向量中,也就是實現一個把矩陣組合到向量的功能,但是優化庫的輸出也是一個包含所有權重參數的向量,我們拿到向量后還需要把它轉換為每 2 層之間的權重矩陣,這樣才能進行前饋預測:



  • 訓練前:初始多個權重矩陣 -> 一個初始向量

  • 訓練后:一個最優向量 -> 多個最優權重矩陣



3.3 梯度校驗


梯度校驗是用來檢驗我們的 BP 算法計算的偏導數是否和真實的偏導數存在較大誤差,計算以下 2 個偏導數向量的誤差:



  • 反向 BP 算法計算的偏導數

  • 利用導數定義計算的偏導數


對於單個參數,在一點 \(\theta\) 處的導數可由 \([\theta - \epsilon, \theta + \epsilon]\) 表示,這也是導數定義的一種:


\[grad = \frac{J(\theta + \epsilon) - J(\theta - \epsilon)}{2 \epsilon} \]


如圖:



但是我們的神經網絡代價函數有很多參數,當我們把參數矩陣轉為向量后,可以對向量里的每個參數進行梯度檢驗,只需要分別用定義求偏導數即可,比如檢驗 \(\theta_1\)


\[\frac {\partial J}{\partial \theta_1} = \frac {J (\theta_1 + \varepsilon_1, \theta_2, \theta_3 ... \theta_n ) - J(\theta_1 - \varepsilon_1, \theta_2, \theta_3 ... \theta_n)}{2 \varepsilon} \]


以此類推,檢驗 \(\theta_n\)


\[\frac {\partial J}{\partial \theta_n} = \frac {J (\theta_1, \theta_2, \theta_3 ... \theta_n + \varepsilon_n) - J(\theta_1, \theta_2, \theta_3 ... \theta_n - \varepsilon_n)}{2 \varepsilon} \]


求出導數定義的偏導數后,與 BP 算法計算的偏導數計算誤差,在誤差範圍內認為 BP 算法計算的偏導數(D_vec)是正確的,梯度檢驗的偽代碼如下:


for i = 1 : n
theta_plus = theta
theta_plus[i] = theta_plus + epsilon

theta_minu = theta
theta_minu[i] = theta_minu - epsilon

grad = (J(theta_plus) - J(theta_minu)) / (2 * epsilon)
end

check 誤差: grad 是否約等於 D_vec

注意一點:梯度檢驗通常速度很慢,在訓練神經網絡前先別進行檢驗!


今天就到這,溜了溜了,下篇文章見:)


本站聲明:網站內容來源於博客園,如有侵權,請聯繫我們,我們將及時處理

【其他文章推薦】



USB CONNECTOR掌控什麼技術要點? 帶您認識其相關發展及效能



台北網頁設計公司這麼多該如何選擇?



※智慧手機時代的來臨,RWD網頁設計為架站首選



※評比南投搬家公司費用收費行情懶人包大公開



※回頭車貨運收費標準



Orignal From: 從 0 開始機器學習 - 神經網絡反向 BP 算法!

留言

這個網誌中的熱門文章

有了四步解題法模板,再也不害怕動態規劃!(看不懂算我輸)

導言 動態規劃問題一直是算法面試當中的重點和難點,並且動態規劃這種通過空間換取時間的算法思想在實際的工作中也會被頻繁用到,這篇文章的目的主要是解釋清楚 什麼是動態規劃 ,還有就是面對一道動態規劃問題,一般的 思考步驟 以及其中的注意事項等等,最後通過幾道題目將理論和實踐結合。 什麼是動態規劃 如果你還沒有聽說過動態規劃,或者僅僅只有耳聞,或許你可以看看 Quora 上面的這個 回答 。 How to explain dynamic 用一句話解釋動態規劃就是 " 記住你之前做過的事 ",如果更準確些,其實是 " 記住你之前得到的答案 "。 我舉個大家工作中經常遇到的例子。 在軟件開發中,大家經常會遇到一些系統配置的問題,配置不對,系統就會報錯,這個時候一般都會去 Google 或者是查閱相關的文檔,花了一定的時間將配置修改好。 過了一段時間,去到另一個系統,遇到類似的問題,這個時候已經記不清之前修改過的配置文件長什麼樣,這個時候有兩種方案,一種方案還是去 Google 或者查閱文檔,另一種方案是借鑒之前修改過的配置,第一種做法其實是萬金油,因為你遇到的任何問題其實都可以去 Google,去查閱相關文件找答案,但是這會花費一定的時間,相比之下,第二種方案肯定會更加地節約時間,但是這個方案是有條件的,條件如下: 之前的問題和當前的問題有着關聯性,換句話說,之前問題得到的答案可以幫助解決當前問題 需要記錄之前問題的答案 當然在這個例子中,可以看到的是,上面這兩個條件均滿足,大可去到之前配置過的文件中,將配置拷貝過來,然後做些細微的調整即可解決當前問題,節約了大量的時間。 不知道你是否從這些描述中發現,對於一個動態規劃問題,我們只需要從兩個方面考慮,那就是 找出問題之間的聯繫 ,以及 記錄答案 ,這裏的難點其實是找出問題之間的聯繫,記錄答案只是順帶的事情,利用一些簡單的數據結構就可以做到。 概念 上面的解釋如果大家可以理解的話,接    動態規劃 算法是通過拆分問題,定義問題狀態和狀態之間的關係,使得問題能夠以遞推(或者說分治)的方式去解決。它的幾個重要概念如下所述。    階段: 對於一個完整的問題過程,適當的切分為若干個相互聯繫的子問題,每次在求解一個子問題...

計算機本地文件快要滅絕了

   編者按: 文件是数字世界的基石,是我們基本的工作單位。但是,隨着互聯網的雲化、平台化、服務化,文件日益變得可有可無。這樣一種改變究竟好不好呢?喜歡懷舊的 Simon Pitt 開始回顧各種文件的好處,哪怕這讓他顯得不合時宜。原文發表在 medium 上,標題是:Computer Files Are Going Extinct   我喜歡文件。我喜歡對文件重命名、移動、排序,改變它們在文件夾中的显示方式,去備份文件,將之上傳到互聯網,恢復它們,對其進行複製,甚至還可以對文件進行碎片整理。作為信息存儲方式的一種隱喻,在我看來文件是很出色的。我喜歡把文件當作一個工作單位。如果我要寫篇文章,文章會放在文件裏面。如果我要生成圖像,圖像會保存進文件裏面。    謳歌 files.doc   文件是擬物化的。這是個很花哨的詞,只是用來表示文件是反映現實物品的一個数字概念。比方說,Word 文檔就像一張紙,躺在你的辦公桌上(desktop)。JPEG 就像一幅畫,等等。它們每個都有一個小圖標,圖標的樣子看起來像它們所代表的現實物品。一堆紙,一個畫框,一個馬尼拉文件夾。真的挺很迷人的。   我喜歡文件的一點是,不管裏面有什麼,跟文件的交互方式總是一致的。我上面提到的那些東西——複製、排序、碎片整理——我可以對任何文件進行那些處理。文件可能是圖像、遊戲的一部分、也可能是我最喜歡的餐具清單。碎片整理程序不在乎它是什麼。它不會去判斷內容。   自從我開始在 Windows 95 裏面創建文件以來,我就一直都很喜歡文件。但是我注意到我們已經開始慢慢地遠離把文件當作基本工作單位的做法。 Windows95。我的計算機    services.mp3 的興起   十幾歲的時候,我開始痴迷於收集和管理数字音樂:我收藏 MP3 文件。一大堆的 128 kbps MP3 文件。如果你足夠幸運,有自己的 CD 刻錄機的話,就可以將它們刻錄到 CD 上,然後在朋友之間傳遞。一張 CD 可以容納 700 MB。這相當於將近 500 張軟盤!   我會仔細端詳我的收藏,然後煞費苦心地給它們添加上 IDv1 和 IDv2 音樂標籤。隨着時間的流逝,大家開始開發可以在雲端自動獲取曲目列表的工具,這樣你就可以檢查和驗證 MP3 的質量。有時候我甚至會去聽那些該死的東西,儘管...

純電動 Mini Cooper SE 將成為中國國產車,年產 16 萬輛

BMW 集團與中國長城汽車合資,將於江蘇建立新廠,專門投入生產 MINI Cooper SE 和部分長城品牌電動車,預計於 2022 年完工並投入生產,每年將可生產 16 萬輛電動車。 靈動可愛的 Mini Cooper,在許多車迷心中都有著特殊的地位,今年 7 月發表了首款純電動版本的 Mini Cooper SE 之後,獲得熱烈迴響,預訂數量已接近 8 萬台,顯示大家對於純電 Mini 的熱愛,因為油電版的 Mini Cooper Countryman 的全球總銷售量也才 3 萬出頭。 Mini Cooper SE 之前公布了官方定價,最低從 27,900 歐元起算,美國售價約 29,900 美元。相比現有的三門款,只貴了一成左右。然而,三年後,中國消費者將有機會買到最便宜的電動 Mini。 電動 Mini Cooper SE 最低價是 27,900 歐元,扣掉全額補助最低可以到 24,400 歐元。 BMW 集團與中國長城汽車集團於 2018 年宣布,將組建合資公司光束汽車,投入在中國的電動車生產計畫,而現在他們正式宣布啟動計畫,於江蘇張家港打造一個新工廠,全部投入電動車的製造,包括了 Mini Cooper SE 和其他長城汽車旗下的電動車。 目前的電動 Mini 只在英國牛津工廠製造,不難想像當產能轉移到中國後,Mini Cooper SE 的價格將有機會進一步調降,來競爭全球最大的電動車市場。這座屬於合資公司光束汽車的新工廠,採用一個新的產銷模式,由 BMW 和長城共同合作開發、設計、製造新產品,但是銷售通路完全沿用原本的品牌渠道。 換句話說,2020 年到 2022 年銷售的電動 Mini,將會是英國製造,而 2022 年後就會有中國製造版本開賣,考量到 Mini 在中國每年約有 30 萬輛的銷售額,同時油電版的 Coutryman 銷量更佔了全球將近五分之一,無怪乎 BMW 會想在最接近主要市場的地方蓋工廠囉。 外型完美復刻油車版 最後,簡單介紹一下 Mini Cooper SE 這台車。Mini 在電動化的路上,盡力保持著跟經典造型一致的設計,畢竟大家愛的就是它的設計。電動版的 Mini 車頭、車身跟車屁股都多了一個黃色的插頭標誌,車頭的氣壩則變成封閉式設計,除此之外,幾乎看不出來差別,連馬達...